Extensions 1→N→G→Q→1 with N=D14 and Q=C22⋊C4

Direct product G=N×Q with N=D14 and Q=C22⋊C4
dρLabelID
C2×D7×C22⋊C4112C2xD7xC2^2:C4448,937

Semidirect products G=N:Q with N=D14 and Q=C22⋊C4
extensionφ:Q→Out NdρLabelID
D141(C22⋊C4) = (C2×C4)⋊9D28φ: C22⋊C4/C2×C4C2 ⊆ Out D14224D14:1(C2^2:C4)448,199
D142(C22⋊C4) = C24.12D14φ: C22⋊C4/C2×C4C2 ⊆ Out D14224D14:2(C2^2:C4)448,490
D143(C22⋊C4) = C23.44D28φ: C22⋊C4/C23C2 ⊆ Out D14112D14:3(C2^2:C4)448,489

Non-split extensions G=N.Q with N=D14 and Q=C22⋊C4
extensionφ:Q→Out NdρLabelID
D14.1(C22⋊C4) = D14⋊C8⋊C2φ: C22⋊C4/C2×C4C2 ⊆ Out D14224D14.1(C2^2:C4)448,261
D14.2(C22⋊C4) = M4(2).19D14φ: C22⋊C4/C2×C4C2 ⊆ Out D141128-D14.2(C2^2:C4)448,279
D14.3(C22⋊C4) = M4(2).21D14φ: C22⋊C4/C2×C4C2 ⊆ Out D141128+D14.3(C2^2:C4)448,285
D14.4(C22⋊C4) = D4⋊(C4×D7)φ: C22⋊C4/C2×C4C2 ⊆ Out D14224D14.4(C2^2:C4)448,305
D14.5(C22⋊C4) = D42D7⋊C4φ: C22⋊C4/C2×C4C2 ⊆ Out D14224D14.5(C2^2:C4)448,306
D14.6(C22⋊C4) = Q8⋊(C4×D7)φ: C22⋊C4/C2×C4C2 ⊆ Out D14224D14.6(C2^2:C4)448,337
D14.7(C22⋊C4) = Q82D7⋊C4φ: C22⋊C4/C2×C4C2 ⊆ Out D14224D14.7(C2^2:C4)448,338
D14.8(C22⋊C4) = C42⋊D14φ: C22⋊C4/C2×C4C2 ⊆ Out D141124D14.8(C2^2:C4)448,355
D14.9(C22⋊C4) = C22.58(D4×D7)φ: C22⋊C4/C23C2 ⊆ Out D14224D14.9(C2^2:C4)448,198
D14.10(C22⋊C4) = D14⋊M4(2)φ: C22⋊C4/C23C2 ⊆ Out D14112D14.10(C2^2:C4)448,260
D14.11(C22⋊C4) = (D4×D7)⋊C4φ: C22⋊C4/C23C2 ⊆ Out D14112D14.11(C2^2:C4)448,304
D14.12(C22⋊C4) = (Q8×D7)⋊C4φ: C22⋊C4/C23C2 ⊆ Out D14224D14.12(C2^2:C4)448,336
D14.13(C22⋊C4) = D7×C2.C42φ: trivial image224D14.13(C2^2:C4)448,197
D14.14(C22⋊C4) = D7×C22⋊C8φ: trivial image112D14.14(C2^2:C4)448,258
D14.15(C22⋊C4) = D7×C23⋊C4φ: trivial image568+D14.15(C2^2:C4)448,277
D14.16(C22⋊C4) = D7×C4.D4φ: trivial image568+D14.16(C2^2:C4)448,278
D14.17(C22⋊C4) = D7×C4.10D4φ: trivial image1128-D14.17(C2^2:C4)448,284
D14.18(C22⋊C4) = D7×D4⋊C4φ: trivial image112D14.18(C2^2:C4)448,303
D14.19(C22⋊C4) = D7×Q8⋊C4φ: trivial image224D14.19(C2^2:C4)448,335
D14.20(C22⋊C4) = D7×C4≀C2φ: trivial image564D14.20(C2^2:C4)448,354

׿
×
𝔽