Extensions 1→N→G→Q→1 with N=D14 and Q=C22:C4

Direct product G=NxQ with N=D14 and Q=C22:C4
dρLabelID
C2xD7xC22:C4112C2xD7xC2^2:C4448,937

Semidirect products G=N:Q with N=D14 and Q=C22:C4
extensionφ:Q→Out NdρLabelID
D14:1(C22:C4) = (C2xC4):9D28φ: C22:C4/C2xC4C2 ⊆ Out D14224D14:1(C2^2:C4)448,199
D14:2(C22:C4) = C24.12D14φ: C22:C4/C2xC4C2 ⊆ Out D14224D14:2(C2^2:C4)448,490
D14:3(C22:C4) = C23.44D28φ: C22:C4/C23C2 ⊆ Out D14112D14:3(C2^2:C4)448,489

Non-split extensions G=N.Q with N=D14 and Q=C22:C4
extensionφ:Q→Out NdρLabelID
D14.1(C22:C4) = D14:C8:C2φ: C22:C4/C2xC4C2 ⊆ Out D14224D14.1(C2^2:C4)448,261
D14.2(C22:C4) = M4(2).19D14φ: C22:C4/C2xC4C2 ⊆ Out D141128-D14.2(C2^2:C4)448,279
D14.3(C22:C4) = M4(2).21D14φ: C22:C4/C2xC4C2 ⊆ Out D141128+D14.3(C2^2:C4)448,285
D14.4(C22:C4) = D4:(C4xD7)φ: C22:C4/C2xC4C2 ⊆ Out D14224D14.4(C2^2:C4)448,305
D14.5(C22:C4) = D4:2D7:C4φ: C22:C4/C2xC4C2 ⊆ Out D14224D14.5(C2^2:C4)448,306
D14.6(C22:C4) = Q8:(C4xD7)φ: C22:C4/C2xC4C2 ⊆ Out D14224D14.6(C2^2:C4)448,337
D14.7(C22:C4) = Q8:2D7:C4φ: C22:C4/C2xC4C2 ⊆ Out D14224D14.7(C2^2:C4)448,338
D14.8(C22:C4) = C42:D14φ: C22:C4/C2xC4C2 ⊆ Out D141124D14.8(C2^2:C4)448,355
D14.9(C22:C4) = C22.58(D4xD7)φ: C22:C4/C23C2 ⊆ Out D14224D14.9(C2^2:C4)448,198
D14.10(C22:C4) = D14:M4(2)φ: C22:C4/C23C2 ⊆ Out D14112D14.10(C2^2:C4)448,260
D14.11(C22:C4) = (D4xD7):C4φ: C22:C4/C23C2 ⊆ Out D14112D14.11(C2^2:C4)448,304
D14.12(C22:C4) = (Q8xD7):C4φ: C22:C4/C23C2 ⊆ Out D14224D14.12(C2^2:C4)448,336
D14.13(C22:C4) = D7xC2.C42φ: trivial image224D14.13(C2^2:C4)448,197
D14.14(C22:C4) = D7xC22:C8φ: trivial image112D14.14(C2^2:C4)448,258
D14.15(C22:C4) = D7xC23:C4φ: trivial image568+D14.15(C2^2:C4)448,277
D14.16(C22:C4) = D7xC4.D4φ: trivial image568+D14.16(C2^2:C4)448,278
D14.17(C22:C4) = D7xC4.10D4φ: trivial image1128-D14.17(C2^2:C4)448,284
D14.18(C22:C4) = D7xD4:C4φ: trivial image112D14.18(C2^2:C4)448,303
D14.19(C22:C4) = D7xQ8:C4φ: trivial image224D14.19(C2^2:C4)448,335
D14.20(C22:C4) = D7xC4wrC2φ: trivial image564D14.20(C2^2:C4)448,354

׿
x
:
Z
F
o
wr
Q
<